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Abstract

The goal of the internship was to study the combination of LiDAR point clouds and
aerial images in a deep learning model to identify individual trees, and in particular
those covered by other trees. To do this, I modified a model capable of merging
LiDAR and RGB data to feed it with more information about the geometry below
the canopy surface. This required to create my own tree dataset, using publicly
available data from the Netherlands. A few interesting results emerged and the
model proved its ability to quickly learn to find large and medium trees, even with
a small training dataset. However, this new pipeline should be evaluated on a larger
dataset to precisely determine the influence of the modifications on the performance
regarding small and covered trees.

The source code for this report can be found here1 and the online version is here2.
The source code for the project can be found here3.

1https://github.com/ZokszY/Geodan-internship-report
2https://zokszy.github.io/Geodan-internship-report
3https://github.com/sogelink-research/tree-segmentation
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Introduction

Individual detection of trees is an increasingly important topic in computer vision,
because of its numerous applications and the recent major improvements in object
detection. Trees are more and more monitored, from forest carbon stocks to urban
tree inventories, to allow for a better assessment of their evolution and a better
management of forests and urban trees. Most of the tasks related to trees either
require or would benefit from a method allowing precise delineation and separation
of trees as individual entities.

To identify trees, the two most common types of data used are LiDAR point clouds
and visible/hyperspectral images. The two types of data are indeed complementary,
as point clouds capture geometric information with multiple features, while images
capture colors. However, combining them into a single pipeline is not an easy task
because they inherently have very different spatial organization and encoding. This
difficulty holds true for both analytical methods and deep learning models. However,
some deep learning models still manage to merge point clouds and images by creating
rasters from the surface of the point cloud, which can then be handled similarly to
visible and hyperspectral images.

In this work, I focused on one specific deep learning model, and tried to improve it
by extracting more information from the LiDAR point cloud, which also contains
a lot of data below the canopy surface. With this modification, I also hoped to be
able to experiment on the ability of the model to detect covered trees, which are
trees invisible from above because of occlusion by a larger tree. This is a task that
is completely impossible for the initial model before my modifications, because all
the data it takes as input is limited to what is visible from above.

To experiment on this, I had to create my own tree annotations dataset, using high-
quality data available on the whole of the Netherlands, and hand-annotations for the
trees. I then implemented the whole training pipeline and the model from scratch,
before conducting experiments to assess the impact of my modifications.

6



1 State-of-the-art

1.1 Computer vision tasks related to trees

Before talking about models and datasets, let’s define properly the task that this
project focused on, in the midst of all the various computer vision tasks, and specif-
ically those related to tree detection.

The first main differentiation between tree recognition tasks comes from the acqui-
sition of the data. There are some very different tasks and methods using either
ground data or aerial/satellite data. This is especially true when focusing on urban
trees, since a lot of street view data is available [1].

This leads to the second variation, which is related to the kind of environment that
we are interested in. Papers in this field usually focus on one or two types of tree
environments: urban areas [1, 2], tree plantations [3, 4, 5] and forests [3, 6, 7]. These
types of environments influence, among other things, the organization of the trees in
space. This is important, because the tasks and the difficulty depends on the type
of environment. Tree plantations are much easier to work with than completely wild
forests, while urban areas contain various levels of difficulty ranging from alignment
trees to private and disorganized gardens and parks. For this project, we mainly
focused on urban areas, but the pipeline and the model should still be applicable to
tree plantations and forests.

Then, there are four fundamental computer vision tasks that have their respective
applications when dealing with trees [4]:

• Classification, which consists in assigning one class label to an image, equiv-
alent to putting it into a category given a list of possible categories. This is
quite rare for airborne tree applications though since there are multiple trees
on each image most of the time

• Detection, which consists in detecting objects and placing boxes around them
• Semantic segmentation, which consists in associating a class label to every

pixel of an image,
• Instance segmentation, which consists in adding a layer of complexity to se-

mantic segmentation by also differentiating between the different instances of
each class

These generic tasks can be extended by trying to get more information from the
data about the trees. The most common pieces of information are the species and
the height, but some models also try to predict the health of the trees [4], or their
carbon stock [8].
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In this work, I focus on the detection of trees, with a classification between several
labels related to the discrepancies between the different kinds of data.

1.2 Datasets

1.2.1 Requirements

Before presenting the different annotated trees datasets and the reasons why they
were not fully usable for the project, let’s enumerate the different conditions and
requirements I was looking for to properly train the model:

• Multiple types of data:

– Aerial RGB images
– LiDAR point clouds (preferably aerial)
– Aerial infrared (CIR) images (optional)

• Tree crown annotations or bounding boxes
• High-enough resolution:

– For images, about 25 cm
– For point clouds, about 10 cm

Here are the explanations for these requirements. As for the types of data, RGB
images and point clouds are required to experiment on the ability of the model to
combine the two very different kinds of information they hold. Infrared data can
also improve tree detection, but it was optional for this work because RGB images
are enough to study the combination. Regarding tree annotations, it is necessary to
have a way to spatially identify them individually, using crown contours or simply
bounding boxes. Since the model outputs bounding boxes, any kind of other format
can easily be transformed to bounding boxes. Finally, the resolution has to be high
enough to identify all individual trees, including the smallest ones. For the point
clouds especially, the whole idea is to see if and how the topology of the trees can be
learnt, using at least the trunks and even the biggest branches if possible. Therefore,
even if they are not really comparable, this is the reason why the required resolution
is more precise for the point clouds.

1.2.2 Existing datasets with annotated trees

As explained above, there are quite a lot of requirements to fulfill to have a complete
dataset with annotated trees which is suitable for the task. In practice, almost all the
available datasets with annotated trees are missing something, as they are mainly
focusing on using one kind of raw data (either spectral/hyperspectral images or
LiDAR point clouds) and try to make the most out of it, instead of trying to use all
the types of data together.

The most comprehensive list of tree annotations datasets was published in OpenFor-
est [9]. FoMo-Bench [10] also lists several interesting datasets, even though most of
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them can also be found in OpenForest. Without enumerating all of them, there are
multiple kinds of datasets that all have their own flaws regarding the requirements
of this work.

Firstly, there are the forest inventories. TALLO [11] is probably the most interesting
one in this category, because it contains a lot of spatial information about almost
500K trees, with their locations, their crown radii and their heights. Therefore,
everything needed to localize trees is in the dataset. However, I didn’t manage to
find RGB images or LiDAR point clouds of the areas where the trees are located,
making it impossible to use these annotations to train tree detection.

Secondly, there are the RGB datasets. Two examples of these datasets with a high
quality of image are ReforesTree [8] and MillionTrees [12]. The only but major
drawback of these datasets is obviously that they don’t provide any kind of point
cloud, which makes them unsuitable for the task.

Thirdly, there are the LiDAR datasets, such as [13] and [14]. Similarly to RGB
datasets, they lack one of the data source for the task I worked on. But unlike them,
they have the advantage that the missing data could be much easier to acquire from
another source, since RGB aerial or satellite images are much more common than
LiDAR point clouds. However, this solution was abandoned for two main reasons.
First it is often quite challenging to find the exact locations where the point clouds
were acquired. Then, even when the location is known, it is often in the middle of
a forest where the quality of openly available satellite imagery very low.

Finally, I also found two datasets that had RGB and LiDAR components. The first
one is MDAS [15]. This benchmark dataset encompasses RGB images, hyperspectral
images and Digital Surface Models (DSM). There are however two major flaws. The
obvious one is that this dataset was created with land semantic segmentation tasks
in mind, so there is no tree annotations. The less obvious one is that a DSM is not
a point cloud, even though it is some kind of 3D information and is often created
using a LiDAR point cloud. As a consequence, this substantially limits the ability
to experiment with the point cloud.

The only real dataset with RGB and LiDAR comes from NEON [6]. This dataset
contains exactly all the data I was looking for, with RGB images, hyperspectral
images and LiDAR point clouds. With 30975 tree annotations, it is also a quite
large dataset, spanning across multiple various forests. The main reason why I
decided not to use it in the end is the quality of the data, which is not bad but not
as great as the one from the data available for the Netherlands, which I will talk
about in the next section Section 1.2.3.

1.2.3 Public data

After rejecting all the available datasets I had found, the only remaining solution
was to create my own dataset. I won’t dive too much in this process that I will
explain in Chapter 3. I just want to mention all the publicly available raw data that
I used or could have used to create this custom dataset.
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For practical reasons, the two countries where I mostly searched for available data
are France and the Netherlands. I was looking for three different data types inde-
pendently:

• RGB (and if possible CIR) images
• LiDAR point clouds
• Tree annotations

These three types of data are available in similar ways in both countries, although
the Netherlands have a small edge over France. RGB images are really easy to find
in France with the BD ORTHO [16] and in the Netherlands with the Luchtfotos
[17], but the resolution is better in the Netherlands (8 cm vs 20 cm). Hyperspectral
images are also available in both countries, although for those the resolution is only
25 cm in the Netherlands.

As for LiDAR point clouds, the Netherlands have a small edge over France, because
they have already completed their forth version covering the whole country with
AHN4 [18], and are working on the fifth version. In France, data acquisition for the
first LiDAR point cloud covering the whole country started a few years ago [19]. It
is not yet finished, even though the data is already available for half of the country.
The other advantage of the data from the Netherlands regarding LiDAR point clouds
is that all flights are performed during winter, which allows light beams to penetrate
more deeply in trees and reach trunks and branches. This is not the case in France,
were data is acquired during the whole year, adding a level of variation and therefore
more difficulty.

The part that is missing in both countries is related to tree annotations. Many
municipalities have datasets containing information about all the public trees they
handle. This is for example the case for Amsterdam [20] and Bordeaux [21]. However,
these datasets cannot really be used as ground truth for a custom dataset for several
reasons. First, many of them do not contain coordinates indicating the position of
each tree in the city. Then, even those that contain coordinates are most of the
time missing any kind of information allowing to deduce a bounding box for the tree
crowns. Finally, even if they did contain everything, they only focus on public trees,
and are missing every single tree located in a private area. Since public and private
areas are obviously imbricated in all cities, it means that any area we try to train
the model on would be missing all the private trees, making the training process
impossible because we cannot have only a partial annotation of images.

The other tree annotation source that we could have used is the Boomregister [22].
This work covers the whole of the Netherlands, including public and private trees.
However, the precision of the masks is far from perfect, and many trees are missing
or incorrectly segmented, especially when they are less than 9 m high or have a
crown diameter smaller than 4 m. Therefore, even though it is a very impressive
piece of work, I decided that it could not be used as training data for deep learning
models due to its biases and imperfections. Therefore, the only remaining solution
was to annotate trees by myself, to create my own dataset of annotated trees using
the available data.
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1.2.4 Dataset augmentation techniques

When a dataset is too small to train a model, there are several ways of artificially
enlarging it.

The most common way is to randomly apply deterministic or random transforma-
tions to the data, during the training process, to be able to generate several unique
and different realistic data instances from one real data instance. There are a lot of
different transformations that can be applied to images, divided into two categories:
pixel-level and spatial-level [23]. Pixel-level transformations modify the value of in-
dividual pixels, by applying different filters, such as random noise, color shifts and
more complex effects like fog and sun flare. Spatial-level transformations modify
the spatial arrangement of the image, without changing the pixel values. In other
words, these transformations move the pixels in the image. These transformations
range from simple rotations and croppings to complex spatial distortions. In the
end, all these transformations are simply producing one artificial image out of one
real image.

Another way to enlarge a dataset is to instead generate completely new input data
sharing the same properties as the initial dataset. This can be done using Generative
Adversarial Networks (GAN). These models usually have two parts, a generator and
a discriminator, which are trained in parallel. The generator learns to produce
realistic artificial data, while the discriminator learns to discriminate between real
data and artificial data produced by the generator. If the training is successful,
we can then use the generator and random seeds to generate random but realistic
artificial data similar to the dataset. This method has for example been successfully
used to generate artificial tree height maps [24].

However, training GANs can be very unstable, and I haven’t found any paper apply-
ing this technique to generate LiDAR and RGB data at the same time. The artificial
instances would need to be consistent between the two types of data, which might
be very difficult. Therefore, I only used the random image transformations during
the training process, because the chances of training of successful GAN seemed too
low to be worth it.

1.3 Algorithms and models

In this section, the different algorithms and methods are grouped according to the
type of data they use as input.

1.3.1 Images only

First, there are methods that perform tree detection using only visible or hyperspec-
tral images or both. Several different algorithms have been developed to analytically
delineate tree crowns from images, by using the particular shape of the trees and
its effect on images [3]. Without diving into the details, here are a few of them.
The watershed algorithm identifies trees to inverted watersheds using the grey-scale
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image and tree crowns frontiers are found by incrementally flooding the watersheds
[25]. The local maxima filtering uses the intensity of the pixels in the grey-scale im-
age to identify the brightest points locally and use them as treetops [26]. Reversely,
the valley-following algorithm uses the darkest pixels which are considered as the
junctions between the trees since shaded areas are the lower part of the tree crowns
[27]. Another interesting algorithm is template matching. This algorithm simulates
the appearance of simple tree templates with the light effects, and tries to identify
similar patterns in the grey-scale image [28]. Combinations of these techniques and
others have also been proposed.

But with the recent developments of deep learning in image analysis, deep learning
models are increasingly used to detect trees using RGB images. In some cases,
deep learning is used to extract features that can then be the input of one of the
algorithms described above. One example is the use of two neural networks to
predict masks, outlines and distance transforms which can then be the input of
a watershed algorithm [29]. In other cases, a deep learning model is responsible of
directly detecting tree masks or bounding boxes, often using CNNs, given the images
[30].

1.3.2 LiDAR only

Reversely, some of the methods to identify individual trees use LiDAR data only.
There are a lot of different ways to use and analyze point clouds, but the one that is
mostly used for trees is based on height maps, or Canopy Height Models (CHM).

A CHM is a raster computed as the subtraction of the Digital Terrain Model (DTM)
to the Digital Surface Model (DSM). What it means is that a CHM contains the
height above ground of the highest point in the area corresponding to each pixel.
This CHM can for example be used as the input raster for the watershed algorithm,
as it contains the height values that can be used to determine local maxima [31].
The other analytical methods described in the previous section (Section 1.3.1) also
have their equivalents using the CHM.

A lot of different analytical methods and variations of the simple CHM were proposed
to perform individual tree detection, but in the end, most of them still use the
concept of local maxima [32, 33]. A CHM can also be used as the input of any kind
of convolutional neural network (CNN) because it is shaped exactly like any image.
This allows to use a lot of different techniques usually applied to object detection in
images.

Then, even though I finally used an approach similar to the CHM, I want to mention
other kinds of deep learning techniques that exist and could potentially leverage all
the information contained in a point cloud. These techniques can be divided in
two categories: projection-based and point-based methods [34]. The main difference
between the two is that projection-based techniques are based on grids while point-
based methods take unstructured point clouds as input. Among projection-based
methods, the most basic method is 2D CNN, which is how CHM can be processed.
Then, multiview representation tries to tackle the 3D aspect by projecting the point
cloud in multiple directions before merging them together. To really deal with 3D
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data, volumetric grid representation consists in using 3D occupancy grids, which are
processed using 3D CNNs. Among point-based methods, there are methods based
on PointNet, which are able to extract features and perform the classical computer
vision tasks by taking point clouds as input. Finally, Convolutional Point Networks
use a continuous generalization of convolutions to apply convolution kernels to ar-
bitrarily distributed point clouds.

1.3.3 LiDAR and images

Let’s now talk about the models of interest for this work, which are machine learning
pipelines using both LiDAR point cloud data and RGB images.

One example is a pipeline which uses a watershed algorithm to extract crown bound-
aries, before extracting individual tree features from the LiDAR point cloud, hyper-
spectral and RGB images [35]. These features are then used by a random forest
classifier to identify which species the tree belongs to. This pipeline therefore makes
the most out of all data to identify species, but sticks to an improved variant of
the watershed algorithm for individual tree segmentation, which only uses a CHM
raster.

Other works focused on using a model from end to end that is able to take both the
CHM and the RGB data as input and combine them to make the most out of all the
available data. Among other examples, there are ACE R-CNN [36], an evolution
of Mask region-based convolution neural network (Mask R-CNN), and AMF GD
YOLOv8 [7], an evolution of YOLOv8. These two models have proven to give much
better results when using both the images and the LiDAR data as a CHM than
when using only one of them.

In this work, I focus on AMF GD YOLOv8, which looks promising and flexible
thanks to the flexibility of YOLOv8 [37]. Indeed, YoloV8 has different variants
allowing the model to deal with different computer vision tasks.
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2 Objectives and motivations

In this section, I will explain the objectives that I set for this internship and the
motivations that led to them.

2.1 General idea

The basis for this internship was to look at deep learning models to detect trees using
LiDAR and aerial images. In four months, it would have been difficult to dive into
the literature, think about a completely new approach and develop it. Therefore, I
wanted to find an interesting and not too complicated deep learning model, and try
a few changes that would hopefully improve the results.

This idea was also reinforced by the decision to create my own dataset, which
stemmed from two reasons. The first reason was the small number of openly available
tree annotation datasets which contained both LiDAR and RGB data. I therefore
thought that creating a new dataset and making it available could be a great con-
tribution. The second reason was to have more control over the definition and the
characteristics of the dataset, to be able to experiment on the detection of specific
trees.

2.2 Covered trees

The main thing that I wanted to experiment on was the possibility to make better
use of the LiDAR point cloud to be able to detect covered trees. Covered trees are
the trees which are located partially or completely under another tree crown. This
makes them impossible to completely delineate when using only data that is visible
from above. These trees are not meaningless or negligible, because as demonstrated
in this paper [33], they can represent up to 50% of the trees in a forest.

However, doing this implied being able to process them on the whole pipeline. In
practice, covered trees are never annotated in all the datasets that are created using
only RGB images, because they are simply not visible. This means that creating my
own dataset was the only solution to have a dataset containing all trees including
covered trees and be able to easily identify them.
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2.3 Multiple layers of CHM

Being able to find covered trees meant finding a way to extract more information
out of the LiDAR point cloud than what is contained in the CHM. In fact, the CHM
only contains a very small part of the point cloud and doesn’t really benefit from the
3D information that is contained inside the point cloud, only from its 3D appearance
from above. This is particularly true when the point cloud is acquired in a season
where trees don’t have their leaves, because the LiDAR then goes deep into the tree
more easily, and can find the trunk and many of the largest branches.

Therefore, getting information below the tree crown surface was mandatory to find
covered trees. But it could also be helpful for the model to find better separations
between each tree, thanks to having access to the branches and the trunks.

To do this, I wanted to stuck to a simple solution that would integrate well with
the initial model and wouldn’t require too many changes. The idea I implemented
is therefore very simple. Instead of having only one CHM raster, the model will
take multiple layers, each focusing on a different height interval. One way to do
this, which is used in the third method of this paper [32], would be to use the
previous CHM by removing all the points that are in the interval between the CHM
height and 0.5 m below, before computing an additional layer. Instead, I tried a
more simple and straightforward way to do it, by removing all the points above a
certain height threshold, and compute the CHM with the points that are left. Doing
this for multiple height thresholds creates a more complete view of what the point
cloud looks like at multiple levels, which gives a lot more information about the
organization of the point cloud.
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3 Dataset creation

3.1 Definition and content

As explained in Section 1.2.1, the main requirements of the dataset that I wanted
to create were to contain at the same time LiDAR data, RGB data and CIR data,
with simple bounding box annotations for all trees, including trees that are partially
or completely covered by other trees (see Section 2.2).

Then, to make the most out of the point cloud resolution and the RGB images
resolution, I decided to use a CHM resolution of 8 cm, which is also the resolution
of the RGB images. However, the resolution of CIR images is 25 cm, which made it
less optimal, but still usable.

To be able to get results even with a small dataset, I decided to focus on one specific
area, to limit the diversity of trees and environments to something that should still
be learnt with a small dataset. Therefore, the whole dataset is currently inside of
a 1 km × 1 km square around the Geodan office in Amsterdam. It contains 2726
annotated trees spread over 241 images of size 640 px × 640 px i.e. 51.2 m × 51.2 m.
All tree annotations have at least a bounding box, and some of them have a more
accurate polygon representing the shape of the crown. There are four classes, which
I will detail in the next section Section 3.3, and each tree belongs to one class.

On Figure 3.1, you can see what the dataset finally looks like, with all data sources
and bounding boxes.

3.2 Data annotation setup

Annotating all these trees took me about 100 hours, with a very high variation of
the time spent per tree depending on the complexity of the area. To make the most
out of the different data types and fully use them, I mainly used four data sources
and tools.

The most important tool I used is QGIS [38]. QGIS allowed me to visualize all
types of data on the same map: images, point clouds, CHM rasters, boxes and
polygons. I therefore used it to annotate the trees, switching between RGB images
and LiDAR point clouds to detect individual trees. One very useful feature of QGIS
is the possibility to filter the point cloud based on some properties of the points. I
mainly used it to filter out all the points that were classified as buildings and to
adapt the height interval to make the most out of the color gradient and get rid of
the ground or the large trees. This way of removing part of the point cloud using
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(a) RGB image (b) CIR image

(c) LiDAR point cloud (d) CHM raster

Figure 3.1: One data instance with ground-truth bounding boxes
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height thresholds is also related to the idea of having multiple CHM layers fed into
the model using height intervals of the point cloud.

However, QGIS is mostly limited to 2D views from the top, which doesn’t benefit
from the 3D aspect of the point cloud. To visualize the point cloud, I used the
official viewer provided with the AHN4, called AHN-puntenwolkenviewer, which
means AHN point cloud viewer [39]. This viewer allows to navigate through the
point cloud, see it from different angles and color the points according to different
attributes. I found the intensity (intensiteit) to be a convenient way to display the
point cloud, as it sometimes allow to differentiate between leaves and branches, and
it breaks the homogeneity of using the height as color attribute. This viewer enabled
me to make sense out of the 2D view of the point cloud I had in QGIS.

Finally, I also used Google Street View [40] to have visual information about the
trees. This was mainly useful for the most difficult parts of the dataset, but it was
only available for trees that were not too far from a street. Google Street View
images helped me in dense areas with thin trees, where the point cloud doesn’t
capture very well the structure of the trees and trees are mostly indistinguishable
from above. Having the possibility to switch between different dates also enabled
me to see the evolutions and have more chances to find a clear picture.

In Figure 3.2, you can see what each data source looks like.

(a) RGB image (b) LiDAR point cloud from above, colored
with height, filtered with 2 <= 𝑍 <= 20

(c) Google StreetView screenshot (d) LiDAR point cloud with 3D navigation

Figure 3.2: Data sources used to annotate the trees
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3.3 Challenges and solutions

The creation of this dataset raised a number of challenges. The first one was the
interval of time between the acquisition of the different types of data. While the
point cloud data dated from 2020, the RGB images were acquired in 2023. It would
have been possible to use images from 2021 or 2022 with the same resolution, but the
quality of the 2023 images was much better, in the sense that trees were much more
distinguishable. Consequently, there were a certain amount of changes regarding
trees between these two periods of acquisition. Some large trees were cut, while
small trees were planted, sometimes even at the position of old trees that were
previously cut in the same time frame. For this reason, a non negligible number of
trees were either present only in the point cloud, or only in the images. An example
of such a situation can be found in Figure 3.3. To try to handle this situation, I
created two new class labels corresponding to these situation. This amounted up to
4 class labels:

• “Tree”: trees which are visible in the point cloud and the images
• “Tree_LiDAR”: trees which are visible in the point cloud only but would be

visible in the images if they had been there during the acquisition
• “Tree_RGB”: trees which are visible in the images only but would be visible

in the point cloud if they had been there during the acquisition
• “Tree_covered”: trees that are visible in the point cloud only because they are

covered by other trees.

(a) RGB image (b) CHM raster

Figure 3.3: A tree that was cut off and replaced

The next challenge was the misalignment of images and point cloud. This misalign-
ment comes from the images not being perfectly orthogonal. Point clouds don’t
have this problem, because the data is acquired and represented in 3D, but objects
in images have to be projected to a 2D plane after being acquired with an angle
that is not perfectly orthogonal to the plane. Despite the post-processing that was
surely performed on the images, they are therefore not perfect, and there is a shift
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between the positions of each object in the point cloud and in the images. This shift
cannot really be solved, because it depends on the position of the object relative to
the sensor. Because of this misalignment, a choice had to be made as to where tree
annotations should be placed, using either the point clouds or the RGB images. I
chose to the RGB images as it is simpler to visualize and annotate, but there was
not really a perfect choice.

On Figure 3.4, you can see two of the issues. First, you can see that a bounding box
that is well-centered around the tree in the RGB image is completely off on the CIR
image, and also not really centered on the CHM raster. Then, you can see that the
bounding box is much smaller on the CHM, mainly for two reasons: the tree grew
between the acquisition of the LiDAR point cloud and the RGB image and small
branches on the outside of the tree are hard to capture for LiDAR beams.

(a) RGB image (b) CIR image

(c) LiDAR point cloud (d) CHM raster

Figure 3.4: Example of data misalignment

Finally, the last challenge comes from the definition of what is considered as a tree
and what is not. There are two main sub-problems. The first one comes from
the threshold to set between bushes and trees. Large bushes can be much larger
than small trees, and sometimes have a similar shape. Therefore, it is hard to keep
coherent rules when annotating them. The second sub-problem comes from multi-
stemmed and close trees. It can be very difficult to see, even with the point cloud, if
a there is only one tree with two or more trunks dividing at the bottom, or multiple
trees which are simply close to one another. This challenge is also mentioned in
another paper [41]. In the end, it was just an unsolvable problem for which the most
important was to remain consistent over the whole dataset.
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3.4 Augmentation methods

Dataset augmentation methods are in the middle between dataset creation and deep
learning model training, because they are a way to enhance the dataset but depend
on the objective for which the model is trained. Their importance is inversely pro-
portional with the size of the dataset, which made them very important for my small
dataset of annotated trees.

As it was already explained in Section 1.2.4, I used Albumentations [23] to apply
two types of augmentations: pixel-level and spatial-level.

Spatial-level augmentations had to be in the exact same way to the whole dataset, to
maintain the spatial coherence between RGB images, CIR images and the CHM lay-
ers. I used three different spatial transformations, applied with random parameters.
The first one chooses one of the eight possible images when flipping and rotating by
angles that are multiples of 90°. The second one adds a perspective effect to the
images. The third one adds a small distortion to the image.

On the contrary, pixel-level augmentations must be applied differently to RGB im-
ages and CHM layers because they represent different kinds of data, and the values
of the pixels do not have the same meaning. In practice, a lot of transformations were
conceived to reproduce camera effects on RGB images or to shift the color spectrum.
Among others, I used random modifications of the brightness, the gamma value and
added noise and a blurring effect randomly to RGB images. For both types of data,
a channel dropout is also randomly applied, leaving a random number of channels
and removing the others. A better way to augment the CHM data would have been
to apply random displacements and deletions of points in the point cloud, before
computing the CHM layers. However, these operations are too costly to be inte-
grated in the training pipeline without consequently increasing the training time, so
this idea was discarded.

On Figure 3.5, you can see an RGB image and 15 random augmentations of this
image, generated with the transformations and the probabilities used during training.
The most visible change happens when one or two color channels are dropped, which
completely changes the color of the image.But other effects are also visible such as
luminosity changes in images n°4 and 14, perspective changes in n°5, 8 and 13,
blurring in n°1 and 14, and distortions in n°10 and 12. All these effects and some
other less identifiable augmentations (like noise), are randomly combined to produce
many different images, with bounding boxes being modified accordingly.
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(a) Initial image (b) Transformed im-
age n°1

(c) Transformed im-
age n°2

(d) Transformed im-
age n°3

(e) Transformed im-
age n°4

(f) Transformed im-
age n°5

(g) Transformed im-
age n°6

(h) Transformed im-
age n°7

(i) Transformed im-
age n°8

(j) Transformed im-
age n°9

(k) Transformed im-
age n°10

(l) Transformed im-
age n°11

(m) Transformed im-
age n°12

(n) Transformed im-
age n°13

(o) Transformed im-
age n°14

(p) Transformed im-
age n°15

Figure 3.5: Examples of data augmentations on an RGB image with the probabilities
used when training the model.
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4 Model and training

The deep learning model that is used is based on AMF GD YOLOv8, the model
proposed in this paper [7].

4.1 Model architecture

The general architecture of the model is conceptually simple. The model takes two
inputs in the form of two rasters with the same height and width. The two inputs
are processed using the backbone of the YOLOv8 model [37] to extract features at
different scales. Then Attention Multi-level Fusion (AMF) layers are used to fuse
the features of the two inputs at each scale level. Then, a Gather-and-Distribute
(GD) mechanism is used to propagate information between the different scales. This
mechanism fuses the features from all scales before redistributing them to the fea-
tures, two times in a row. Finally, the features of the three smallest scales are
fed into detection layers responsible for extracting bounding boxes and assigning
confidence scores and class probabilities to them.

Figure 4.1: Model architecture

In practical terms, the input rasters have a shape of 640  ×  640  ×  𝑐RGB and 640  ×
 640  ×  𝑐CHM, where 𝑐RGB is equal to 6 when using RGB and CIR images, and 3
when using only one of them, and 𝑐CHM is the number of CHM layers used for the
model. Since the resolution that is used is 0.08 m, this means that each image spans
over 51.2 m.

The only real modification that I made to the architecture compared to the initial
paper is adding any number of channels in the CHM input, while there was only one
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originally (𝑐CHM = 1). Using CIR images in addition to RGB images is also new,
but this is a less important modification.

4.2 Training pipeline

The training pipeline consists of three steps. First, the data is pre-processed to
create the inputs to feed into the model. Then, the training loop runs until the end
condition is reached. Finally, the final model is evaluated on all the datasets.

4.2.1 Data preprocessing

Data pre-processing is quite straightforward. The first step is to divide the dataset
into a grid of 640 × 640 tiles. Then, all these tiles are placed into one of the training,
validation and test sets.

As for RGB and CIR images, preprocessing only contains two steps: tiling the large
images into small 640 × 640 images, and normalizing all images along each channel.
When both data sources are used, RGB and CIR images are also merged into images
with 6 channels, which will be the input of the model.

As for CHM layers, there are more steps. The first step is to compute a sort of
flattened point cloud, by computing the DTM, which represents the height of the
ground, and removing this height to the point cloud. Then, for each CHM layer,
if the height interval is [𝑧bot, 𝑧top], all the points which have a height ℎ such that
𝑧bot ≤ ℎ ≤ 𝑧top are extracted, and the DSM is computed for this smaller point cloud.
Since the ground height was already removed from the point cloud, this DSM is the
CHM. Then, all the layers are merged into one raster with multiple channels and
the whole raster is normalized with the average and the standard deviation over all
channels. Finally, these rasters are tiled exactly like RGB and CIR images, which
gives the inputs of the model.

All these operations are conceptually simple, but they can be computationally ex-
pensive. Therefore, I put effort into accelerating with different methods. First, I
made sure to save the most important and generic elements to avoid useless com-
putations every time the model is trained again, without saturating the memory.
Then, I also implemented multi-threading for every possible step to improve the raw
speed of preprocessing. Finally, performance is also the reason why normalization
if performed during preprocessing instead of during the initialization of the data in
the training loop.

4.2.2 Training loop

The training loop is very generic, so I will only mention the most interesting parts.
First, an Adam optimizer and a basic learning rate scheduler with a multiplier at
each epoch i which is 1/√𝑖 + 2 are used.
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Then, since the batch size cannot be very large because of the GPU memory space
required by all the images, there is the possibility to perform gradient accumulation,
which means that backward propagation won’t be performed with each batch, but
instead every two or more batches. The idea behind this is to add more stability to
the training, since back-propagating on only a few images is prone to overfitting on
a set of examples which are not representative of the whole dataset.

As for the criterion to stop the training session, the loss on the validation set is used.
Once this loss hasn’t improved for 50 iterations over the whole dataset, the training
stops and the model that had the best validation loss is saved.

Besides these details, the training loop is very generic. We loop over the entire
training set with batches to compute the loss and perform gradient back-propagation.
Then the loss is computed over the validation set and stored as the metric that
decides when to stop.

4.2.3 Output postprocessing

Regarding postprocessing of the output of the model, there a few things to mention.
First, the model outputs a lot of bounding boxes, which have to be cleaned using
two criteria. The first criterion is the confidence score, which is used by setting a
threshold below which bounding boxes are discarded. The second criterion is the
intersection over union (IoU) with other bounding boxes. IoU is a metrics used to
quantify how similar two bounding boxes are. It is a value between 0 and 1, which
formula is:

IoU(𝐴, 𝐵) = area(𝐴 ∩ 𝐵)
area(𝐴 ∪ 𝐵)

This metrics can be used to detect bounding boxes which are too similar to each
other. This allows to simply keep the bounding box with the highest confidence
score when two bounding boxes have an IoU larger than a certain threshold. This
process based on IoU to eliminate duplicate bounding boxes is called non-maximum
suppression.

For the evaluation, the process is a little different, because non-maximum suppres-
sion is performed but the confidence threshold used to filter predicted boxes is 0.
The main metric that is computed is called sortedAP [42], which is an evolution of
the mean (point) average precision (mAP). mAP is defined as follows:

mAP = 1
𝑁 ∑

𝑡∈𝑇
AP𝑡

AP𝑡 = 𝑇 𝑃 𝑡
𝑇 𝑃 𝑡+𝐹𝑃 𝑡+𝐹𝑁𝑡

where 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑁} is a list of IoU threshold values, 𝑇 𝑃 𝑡 are the true positives
when the the IoU threshold is 𝑡, 𝐹𝑃 𝑡 are false positives and 𝐹𝑁 𝑡 are false negatives.
The reason why 𝑇 𝑃 , 𝐹𝑃 and 𝐹𝑁 depend on 𝑡 is that a bounding box is considered
to be true if its IoU with one of the ground-truth bounding boxes is larger than 𝑡.
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sortedAP is an improvement over this method because there is no need to select
a list of IoU threshold values. Predicted bounding boxes are sorted according to
their confidence score which allows to compute AP incrementally for any value of 𝑡.
Then, the area of the curve of the AP with respect to the IoU threshold is used as a
metric, between 0 and 1, 1 being the best possible value. You can see in Figure 4.2
an example of the output of the sortedAP method. The curves represent the AP at
any IoU threshold value. Then, the integral of this curve gives the value of sortedAP,
which is displayed in the legend here.

Figure 4.2: Example of three sortedAP curves with the results of a model with three
different data combinations

Finally, it is necessary to choose a fixed confidence threshold to compute the curve,
because this value decides which boxes will be kept and how the predicted and
ground-truth boxes will be matched. Therefore, the value of the best confidence
threshold has a very high impact over the value of sortedAP, and cannot easily
be determined during the training, as the confidence of the model evolves quickly.
Therefore, computing sortedAP for different confidence threshold allows to always
estimate the best performance it can have. Figure 4.3 shows how the value of
sortedAP evolves and how the confidence threshold values in the previous figure
(Figure 4.2) were chosen.
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Figure 4.3: Example of the values of sortedAP depending on the confidence threshold
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5 Results

In this section are the results of the experiments performed with the model and the
dataset presented before.

5.1 Training parameters

The first experiment was a simple test over the different parameters regarding the
training loop. There were two goals to this experiment. The first one was to find
the best training parameters for the next experiments. The second one was to see
if randomly dropping one of the inputs of the model (either RGB/CIR or CHM)
could help the model by pushing it to learn to make the best out of the two types
of data.

The different parameters that are tested here are:

• “Learn. rate”: the initial learning rate.
• “Prob. drop”: the probability to drop either RGB/CIR or CHM. The proba-

bility is the same for the two types, which means that if the displayed value
is 0.1, then all data will be used 80% of the time, while only RGB/CIR and
only CHM both happen 10% of the time.

• “Accum. count”: the accumulation count, which means the amount of training
data to process and compute the loss on before performing gradient back-
propagation.

As you can see on Figure 5.1, sortedAP reaches at best values just above 0.3. Since
the dataset is small, the training process overfits quickly, and the model doesn’t
have enough training steps to have confidence scores which reach very high values.
As a consequence, it is difficult to know beforehand which confidence threshold to
choose. Therefore, the sortedAP metric is computed over several different confidence
thresholds, and the one that gives the best value of sortedAP is kept. This is why
the name of the column is “Best sortedAP”, as the highest sortedAP value over
several confidence thresholds is displayed.

This experiment shows that a learning rate of 0.01 seems to make the training too
much unstable, while 0.001 doesn’t give very high score. Moreover, the training
process seems very unstable in general, which mostly comes from the dataset being
too small. However, a learning rate between 0.0025 and 0.006 seems to give the most
stable results, when the drop probability is 0. This seems to show that the idea of
randomly dropping one of the two inputs doesn’t really help the model to learn.

The next graph (Figure 5.2) displays more results for the same experiments. Here,
the results are colored according to the data that used to evaluate the model. In
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Figure 5.1: Results with different training parameters for all experiments

blue are the values of sortedAP when the model is evaluated with the CHM layers
data and dummy zero arrays as RGB/CIR data. These dummy arrays are also those
that are used as input when one of the channel is dropped during training, when we
have a drop probability larger than 0. Not many conclusions can be drawn from this
plot. One interesting observation is that randomly dropping one of the two inputs
with the same probability seems to have a much larger influence over the results
using RGB/CIR than CHM. While CHM gives better results than RGB/CIR when
always training using everything, RGB/CIR seems to perform better alone when also
trained alone, even outperforming the combination of both inputs in certain cases.
This behavior is not desired, as having mode data should not make the results worse.
The explanation is probably related to the speed of the training, which might be
much quicker for RGB only than for CHM only or both together. Then, if the
training stops early, which is the case when the learning rate is high, RGB only can
output the best results.

From the results of this experiment, I decided to pick the following parameters for
the next experiments:

• Initial learning rate: 0.004
• Drop probability: 0
• Accumulation count: 10
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Figure 5.2: Results with different training parameters for all evaluation data setups

5.2 CHM layers

The goal of the second experiment was to test the model with different layers of
CHM, to see whether more layers can improve the results. I tried two different ways
to cut the point cloud into intervals defining these layers. In both cases, we first
define the height thresholds [𝑡1, 𝑡2, ⋯ , 𝑡𝑛] that will be used. Then, there are two
possibilities for the height intervals to use to compute the CHM layers:

Disjoint = True: [[−∞, 𝑡1], [𝑡1, 𝑡2], [𝑡2, 𝑡3], ⋯ , [𝑡𝑛−1, 𝑡𝑛], [𝑡𝑛, ∞]]
Disjoint = False: [[−∞, 𝑡1], [−∞, 𝑡2], ⋯ , [−∞, 𝑡𝑛], [−∞, ∞]]

The results of this experiment can be found in Figure 5.3. To experiment on other
parameters, half of the models were trained to be agnostic while the other half
was not, to see if the way trees are separated in the four classes has an impact on
performance, either facilitating the learning or hindering the generalization. On this
plot, the borders correspond to the list of height thresholds [𝑡1, 𝑡2, ⋯ , 𝑡𝑛].
These results are difficult to interpret. The first clear effect that we can notice for the
agnostic models is that in the disjoint method (first row starting from the top), when
separating the LiDAR point cloud in too many layers, the model doesn’t manage to
make extract information from the CHM. When using only one CHM layer on the
whole point cloud (which corresponds to (Borders = [])), we can see that the model
performs poorly when using only one data type, but as well as the other models
when using both. The explanation for this may be related to the data augmentation
pipeline, because there is random channel dropout during the training. When there
are multiple channels in the input, almost all of them can be randomly dropped out,
with the limitation that at least one channel will always remain. This is the reason
why there are red, green and blue (two channels dropped) but also purple and cyan
(one channel dropped) images in Figure 3.5. But when there is only one channel,
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Figure 5.3: Results with different CHM layers

this channel is never dropped, which doesn’t force the model to learn how to use
only part of the data.

The other correlation that is visible relates to how models perform using only
RGB/CIR or CHM when being agnostic or not. It is logical for this parameter
to have an impact on the results, since teaching the model to either make a differ-
ence between some of the trees or not will have an impact on what it learns and
what it has to focus on to identify the right class when not being agnostic. From
what we see here in Figure 5.3, it looks like having to make a difference between
the different classes is significantly hinders its performance whatever combination
of input data is used, even though it is more prevalent when using only one input.

Besides these observations, it is hard to draw anymore conclusion from the rest
of the experiments. There is too much variation in the results, which shows how
unstable the training process is. From these results and the previous paragraph, one
interpretation could be that the augmentation pipeline is related to this instability,
as the results with the basic CHM layer have a much smaller variance.

5.3 Covered trees

Then, if we try to look at the performance of the models on the covered trees, which
are called “Tree_low_hard” in Figure 5.4, it is also difficult to draw any conclusion.
The models have mainly learnt to find trees with the generic “Tree” label, and they
are seemingly equally bad at finding the other classes of trees. In Figure 5.4, we
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can see the performance of two models trained with the same repartition of the data
into training, validation and test set. Both models were not agnostic, which means
that they learnt to detect each class of trees and label them properly. The one of
the left uses the largest number of CHM layers (with Borders = [1, 2, 3, 5, 7, 10, 15,
20] and Disjoint = False), whereas the one on the right only uses the default CHM
layer (Borders = []).

(a) Results with all layers on training set (b) Results with one layer on training set

(c) Results with all layers on validation set (d) Results with one layer on validation set

(e) Results with all layers on test set (f) Results with one layer on test set

Figure 5.4: sortedAP curve with different CHM layers on training/validation/test
set

These two examples are really representative of the results of the other models that
were trained. There are only 207 covered trees in the dataset, which is too small
to get the models to learn to identify them and get solid results when comparing
different configurations of CHM layers. Most of the differences that we see come
from the normal random variation during the training.
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5.4 Visual results

In Figure 5.5 are the outputs of trained models on one instance from each of the
training, validation and test sets. The models used are those which results are shown
in Figure 5.4.

The confidence thresholds used to remove low confidence predictions are the ones
that gave the best sortedAP values in Figure 5.4. One aspect that is partly visible
here is that all the categories except the basic “Tree” have confidence scores which
are so low that they are rejected after the selection with the confidence threshold.
This is the reason why there is no predicted bounding box from another class than
“Tree”, even though the models do predict boxes with other labels. This is the case
on the whole dataset, including the training set, and shows how the models learns
more slowly to find the other categories.
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(a) Ground-truth boxes on
one training set instance

(b) Predicted boxes with all
layers on one training set
instance

(c) Predicted boxes with one
layer on one training set
instance

(d) Ground-truth boxes on
one validation set in-
stance

(e) Predicted boxes all layers
on one validation set in-
stance

(f) Predicted boxes one layer
on one validation set in-
stance

(g) Ground-truth boxes on
one test set instance

(h) Predicted boxes all layers
on one test set instance

(i) Predicted boxes one layer
on one test set instance

Figure 5.5: Ground-truth boxes and predictions from two models
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6 Discussion and improvements

6.1 Dataset

From the results of this work, the only certitude is that more training data would
be necessary to confirm any conclusion. Even with augmentation techniques, the
dataset is too small to completely train a model and really experiment with the
small changes applied to it. Since the training loop quickly reaches overfitting, we
don’t really get to see how the model could perform in the most interesting cases,
which are the small, covered or hardly visible trees.

Therefore, the biggest and conceptually simplest improvement that could be done
to this work would be to improve and extend the dataset. Improving with more
diversity, covering a larger part of the Netherlands (or even beyond, but consistency
over images and point clouds can only be ensured in this country), and extending
with more images and more trees. These improvements could also include adding
species information to the dataset, to train models that are capable of differentiating
species.

At the time of writing this report, the newest version of the point cloud has also
been released for one third of the Netherlands, including the area of the current
dataset. This new data could be better for this project, because it was acquired in
2023, the same year as the images that are used in the dataset.

Another approach to generate a larger dataset could be to create a large artificially
annotated dataset, like it was done in another paper [30]. Their approach was to
create a very large dataset with medium-quality data which can be used to pre-
train the model. Then, they use hand-annotated data to finish the training. They
created this large dataset using classical non-machine learning techniques, using
only the point cloud. This approach could solve some of the issues, but it is not sure
whether this would not introduce problems related to covered trees, which might
be missing a lot more in the automatic dataset. Furthermore, using only the point
cloud would leave behind all the trees only visible on the images.

Finally, it would also be interesting to see if the NEON tree dataset [6] can be used to
train a model and make some experiments. This would not also allow to experiment
on covered trees, but it could still show whether multiple layers of CHM can help
delineating individual trees.
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6.2 Instability

As explained in the previous section Section 6.1, the size of the dataset is probably
the main reason for the instability of the training pipeline. But other reasons might
also be responsible for this instability. As explained in Section 5.2, the random
channel dropouts might also destabilize the training by creating inputs with very
different repartition of the information, since some channels are randomly removed.
The value to use as a replacement of these channels is also not easy to choose, as
on the normalized CHM rasters, a value of 0 might be equivalent to a height above
ground of 10 m for example, and a flat surface at 10 m is not exactly no data and
might also be misleading if the CHM usually goes from 0 to 4 m.

More generally, it is possible that other factors are responsible for the instability of
the training pipeline, and it would be useful to find and correct them.

6.3 Model performance

Even though the results displayed in Chapter 5 are far from perfect, they are still
promising for several reasons.

First, the overall results of the model on the general trees are quite impressive, given
that only about 1600 trees are used to train each model, with only about 150 images
covering about 0.4 km². Even though the whole dataset is quite homogenous, this
still shows that the model is capable of generalizing relatively well.

Then, a few correlations have been noticed regarding some parameters or combi-
nations of parameters, even though more robust experiments would be necessary
to confirm them. This is for example the case between agnostic and non-agnostic
models, where the former seem to perform better in general.

However, the models don’t perform good enough in the difficult areas to be able to
draw conclusion on the modifications of the architecture. The overall performance of
the model, which rarely gets a sortedAP score above 0.3, is also relatively low. But
this low score mostly comes from the amount of small trees which have a relatively
high importance in the computation of sortedAP because each tree has the same
weight, no matter their size. In contrast, the models perform quite well on the large
trees, finding most of them in situations that are not too much complex.

Finally, it could be interesting to try another method to extract multiple CHM layers,
which consists in removing only the points of the point cloud which corresponds to
the previous CHM and all those which are close below them, and repeating the
process to scan downwards. This has the advantage of being more adaptive than
using fixed height thresholds for the whole dataset.
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Conclusion

All in all, the results of this internship are interesting and promising, even if not
decisive.

Regarding datasets, the new dataset that was created is promising for several reasons.
First, its spatial extent can easily be extended since the raw data that is used is
publicly available and covers the whole of the Netherlands. Then, its quality will
also surely keep increasing in the future with the different iterations of the images
and the point clouds, at the cost of small annotations modifications to update the
dataset with new and cut-off trees, as well as tree growth. The diversity of trees
and environments from the Netherlands is obviously not even close from what can
be found globally, which wouldn’t make it a great dataset to train a global model,
but it has the potential to be a perfect playground for testing new methods. Finally,
the main drawback of this dataset are the spatial and temporal shifts between each
type of raw data. But these shifts have at least proven to be manageable by the
deep learning models that were trained here. Having these shifts is also interesting
because counting on having perfectly aligned RGB images and point clouds is even
less likely than having both of them available in the first place.

Regarding the model, it is unclear whether having multiple layers of CHM really
improves the results. This is because these layers would have the biggest impact in
the detection of covered trees, which are a specific case that is harder than the other
trees. And since the training dataset was too small, the model overfitted quickly
and could really reach the state when it start learning to find these harder trees.
Therefore, more experiments on a bigger dataset, maybe using better augmentation
techniques, would be required to get an answer. Besides that, the architecture in
itself proved to provide great performance and is quickly able to learn to detect the
medium and large trees. Some interesting improvements could easily be added to the
model, such as the prediction of mask instead of bounding boxes, which only requires
to change the detection heads, or the prediction of species. However, these changes
would require the dataset to be substantially with species and precise delineations
for all trees.
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