Bibliography

Actueel Hoogtebestand Nederland. 2020. AHN4 - Actual Height Model of the Netherlands.” https://www.ahn.nl/.
———. n.d. AHN-puntenwolkenviewer (AHN point cloud viewer).” https://www.ahn.nl/ahn-puntenwolkenviewer.
Arevalo-Ramirez, Tito, Anali Alfaro, José Figueroa, Mauricio Ponce-Donoso, Jose M. Saavedra, Matías Recabarren, and José Delpiano. 2024. “Challenges for Computer Vision as a Tool for Screening Urban Trees Through Street-View Images.” Urban Forestry & Urban Greening 95: 128316. https://doi.org/10.1016/j.ufug.2024.128316.
Beeldmateriaal Nederland. 2024. Luchtfoto’s (Aerial Photographs).” https://www.beeldmateriaal.nl/luchtfotos.
Bordeaux Métropole. 2024. Patrimoine arboré de Bordeaux Métropole (Tree Heritage of Bordeaux Metropole).” https://opendata.bordeaux-metropole.fr/explore/dataset/ec_arbre_p/information/?disjunctive.insee.
Bountos, Nikolaos Ioannis, Arthur Ouaknine, and David Rolnick. 2023. “FoMo-Bench: A Multi-Modal, Multi-Scale and Multi-Task Forest Monitoring Benchmark for Remote Sensing Foundation Models.” arXiv Preprint arXiv:2312.10114. https://arxiv.org/abs/2312.10114.
Buslaev, Alexander, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail Druzhinin, and Alexandr A. Kalinin. 2020. “Albumentations: Fast and Flexible Image Augmentations.” Information 11 (2). https://doi.org/10.3390/info11020125.
Chen, Long, Yuli Wu, Johannes Stegmaier, and Dorit Merhof. 2023. “SortedAP: Rethinking Evaluation Metrics for Instance Segmentation.” In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, 3923–29. https://openaccess.thecvf.com/content/ICCV2023W/BIC/html/Chen_SortedAP_Rethinking_Evaluation_Metrics_for_Instance_Segmentation_ICCVW_2023_paper.html.
Coöperatief Boomregister U.A. 2014. Boom Register (Tree Register).” https://boomregister.nl/.
Diab, Ahmed, Rasha Kashef, and Ahmed Shaker. 2022. “Deep Learning for LiDAR Point Cloud Classification in Remote Sensing.” Sensors (Basel) 22 (20): 7868. https://doi.org/10.3390/s22207868.
Eysn, Lothar, Markus Hollaus, Eva Lindberg, Frédéric Berger, Jean-Matthieu Monnet, Michele Dalponte, Milan Kobal, et al. 2015. “A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space.” Forests 6 (5): 1721–47. https://doi.org/10.3390/f6051721.
Freudenberg, Maximilian, Paul Magdon, and Nils Nölke. 2022. “Individual Tree Crown Delineation in High-Resolution Remote Sensing Images Based on u-Net.” Neural Computing and Applications 34 (24): 22197–207. https://doi.org/10.1007/s00521-022-07640-4.
Gemeente Amsterdam. 2024. Bomenbestand Amsterdam (Amsterdam Tree Dataset).” https://maps.amsterdam.nl/open_geodata/?k=505.
Gomes, Marilia Ferreira, and Philippe Maillard. 2016. “Detection of Tree Crowns in Very High Spatial Resolution Images.” In Environmental Applications of Remote Sensing, edited by Maged Marghany. Rijeka: IntechOpen. https://doi.org/10.5772/62122.
Google. 2024. “Google Street View.” https://www.google.com/streetview/.
Gougeon, François A et al. 1998. “Automatic Individual Tree Crown Delineation Using a Valley-Following Algorithm and Rule-Based System.” In Proc. International Forum on Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, Victoria, British Columbia, Canada, 11–23. Citeseer. https://d1ied5g1xfgpx8.cloudfront.net/pdfs/4583.pdf.
Hao, Zhenbang, Lili Lin, Christopher J. Post, Elena A. Mikhailova, Minghui Li, Yan Chen, Kunyong Yu, and Jian Liu. 2021. “Automated Tree-Crown and Height Detection in a Young Forest Plantation Using Mask Region-Based Convolutional Neural Network (Mask r-CNN).” ISPRS Journal of Photogrammetry and Remote Sensing 178: 112–23. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2021.06.003.
Hu, J., R. Liu, D. Hong, A. Camero, J. Yao, M. Schneider, F. Kurz, K. Segl, and X. X. Zhu. 2023. “MDAS: A New Multimodal Benchmark Dataset for Remote Sensing.” Earth System Science Data 15 (1): 113–31. https://doi.org/10.5194/essd-15-113-2023.
Institut national de l’information géographique et forestière (IGN). 2020. LiDAR HD.” https://geoservices.ign.fr/lidarhd.
———. 2021. BD ORTHO.” https://geoservices.ign.fr/bdortho.
Jucker, Tommaso, Fabian Jörg Fischer, Jérôme Chave, David A. Coomes, John Caspersen, Arshad Ali, Grace Jopaul Loubota Panzou, et al. 2022. “Tallo: A Global Tree Allometry and Crown Architecture Database.” Global Change Biology 28 (17): 5254–68. https://doi.org/10.1111/gcb.16302.
Kalinicheva, Ekaterina, Loic Landrieu, Clément Mallet, and Nesrine Chehata. 2022. “Multi-Layer Modeling of Dense Vegetation from Aerial LiDAR Scans.” https://arxiv.org/abs/2204.11620.
Kwak, Doo-Ahn, Woo-Kyun Lee, Jun-Hak Lee, Greg S. Biging, and Peng Gong. 2007. “Detection of Individual Trees and Estimation of Tree Height Using LiDAR Data.” Journal of Forest Research 12 (6): 425–34. https://doi.org/10.1007/s10310-007-0041-9.
Li, Yingbo, Guoqi Chai, Yueting Wang, Lingting Lei, and Xiaoli Zhang. 2022. “ACE r-CNN: An Attention Complementary and Edge Detection-Based Instance Segmentation Algorithm for Individual Tree Species Identification Using UAV RGB Images and LiDAR Data.” Remote Sensing 14 (13). https://doi.org/10.3390/rs14133035.
Ouaknine, Arthur, Teja Kattenborn, Etienne Laliberté, and David Rolnick. 2023. “OpenForest: A Data Catalogue for Machine Learning in Forest Monitoring.” https://arxiv.org/abs/2311.00277.
Pollock, Richard James. 1996. “The Automatic Recognition of Individual Trees in Aerial Images of Forests Based on a Synthetic Tree Crown Image Model.” PhD thesis, The University of British Columbia (Canada). https://dx.doi.org/10.14288/1.0051597.
Puliti, Stefano, Grant Pearse, Peter Surový, Luke Wallace, Markus Hollaus, Maciej Wielgosz, and Rasmus Astrup. 2023. “FOR-Instance: A UAV Laser Scanning Benchmark Dataset for Semantic and Instance Segmentation of Individual Trees.” https://arxiv.org/abs/2309.01279.
QGIS Development Team. n.d. QGIS Geographic Information System. QGIS Association. https://www.qgis.org.
Qin, Haiming, Weiqi Zhou, Yang Yao, and Weimin Wang. 2022. “Individual Tree Segmentation and Tree Species Classification in Subtropical Broadleaf Forests Using UAV-Based LiDAR, Hyperspectral, and Ultrahigh-Resolution RGB Data.” Remote Sensing of Environment 280: 113143. https://doi.org/10.1016/j.rse.2022.113143.
Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. “You Only Look Once: Unified, Real-Time Object Detection.” In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–88. https://doi.org/10.1109/CVPR.2016.91.
Reiersen, Gyri, David Dao, Björn Lütjens, Konstantin Klemmer, Kenza Amara, Attila Steinegger, Ce Zhang, and Xiaoxiang Zhu. 2022. “ReforesTree: A Dataset for Estimating Tropical Forest Carbon Stock with Deep Learning and Aerial Imagery.” https://arxiv.org/abs/2201.11192.
Safonova, Anastasiia, Emilio Guirado, Yuriy Maglinets, Domingo Alcaraz-Segura, and Siham Tabik. 2021. “Olive Tree Biovolume from UAV Multi-Resolution Image Segmentation with Mask r-CNN.” Sensors 21 (5): 1617. https://doi.org/10.3390/s21051617.
Sun, Chenxin, Chengwei Huang, Huaiqing Zhang, Bangqian Chen, Feng An, Liwen Wang, and Ting Yun. 2022. “Individual Tree Crown Segmentation and Crown Width Extraction from a Heightmap Derived from Aerial Laser Scanning Data Using a Deep Learning Framework.” Frontiers in Plant Science 13. https://doi.org/10.3389/fpls.2022.914974.
Ventura, Jonathan, Camille Pawlak, Milo Honsberger, Cameron Gonsalves, Julian Rice, Natalie L. R. Love, Skyler Han, et al. 2024. “Individual Tree Detection in Large-Scale Urban Environments Using High-Resolution Multispectral Imagery.” International Journal of Applied Earth Observation and Geoinformation 130: 103848. https://doi.org/https://doi.org/10.1016/j.jag.2024.103848.
Vincent, L., and P. Soille. 1991. “Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations.” IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (6): 583–98. https://doi.org/10.1109/34.87344.
Wang, Yunsheng, Juha Hyyppä, Xinlian Liang, Harri Kaartinen, Xiaowei Yu, Eva Lindberg, Johan Holmgren, et al. 2016. “International Benchmarking of the Individual Tree Detection Methods for Modeling 3-d Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning.” IEEE Transactions on Geoscience and Remote Sensing 54 (9): 5011–27. https://doi.org/10.1109/TGRS.2016.2543225.
Weinstein, Ben. 2023. “MillionTrees.” 2023. https://milliontrees.idtrees.org/.
Weinstein, Ben G., Sergio Marconi, Mélaine Aubry-Kientz, Gregoire Vincent, Henry Senyondo, and Ethan P. White. 2020. “DeepForest: A Python Package for RGB Deep Learning Tree Crown Delineation.” Methods in Ecology and Evolution 11 (12): 1743–51. https://doi.org/10.1111/2041-210X.13472.
Weinstein, Ben G., Sergio Marconi, Stephanie Bohlman, Alina Zare, and Ethan White. 2019. “Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks.” Remote Sensing 11 (11). https://doi.org/10.3390/rs11111309.
Weinstein, Ben, Sergio Marconi, and Ethan White. 2022. “Data for the NeonTreeEvaluation Benchmark (0.2.2).” Zenodo. https://doi.org/10.5281/zenodo.5914554.
Wulder, Mike, K.Olaf Niemann, and David G. Goodenough. 2000. “Local Maximum Filtering for the Extraction of Tree Locations and Basal Area from High Spatial Resolution Imagery.” Remote Sensing of Environment 73 (1): 103–14. https://doi.org/10.1016/S0034-4257(00)00101-2.
Zhong, Hao, Zheyu Zhang, Haoran Liu, Jinzhuo Wu, and Wenshu Lin. 2024. “Individual Tree Species Identification for Complex Coniferous and Broad-Leaved Mixed Forests Based on Deep Learning Combined with UAV LiDAR Data and RGB Images.” Forests 15 (2). https://doi.org/10.3390/f15020293.